Vitamin D3 modulates the innate immune response through regulation of the hCAP-18/LL-37 gene expression and cytokine production
- Chiropractic Post
- Jan 13
- 3 min read
Daniel Svensson 1, Daniel Nebel 1, Bengt-Olof Nilsson 2
Affiliations Expand
PMID: 26433491
Reference: https://pubmed.ncbi.nlm.nih.gov/26433491/
Abstract
Introduction: The steroid hormone metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25D3), promotes osteogenic activity and regulates calcium and phosphate metabolism, which are actions regarded as classical vitamin D-regulated functions. Besides its role in these processes, 1,25D3 also seems implicated in the host defense against microbial/pro-inflammatory attacks. Low serum levels of vitamin D3 (vitamin D deficiency) are associated with osteoporosis and increased risk of fractures but also inflammatory diseases and their disease progression, presumably via mechanisms associated with 1,25D3-evoked modulation of the innate immune system. 1,25D3 has been reported to modulate many inflammatory responses, suggesting that it regulates multiple transcriptional targets within the inflammatory system.
Results: Experimental studies in various experimental systems show that 1,25D3 differentially regulates the production of pro-inflammatory cytokines and chemokines depending on cell type. Importantly, many reports show that 1,25D3 up-regulates expression of the human antimicrobial peptide hCAP-18/LL-37 gene. The hCAP-18/LL-37 gene seems indeed to be an important transcriptional target for 1,25D3. However, only limited evidence is presented showing that 1,25D3 consistently increases the amount of biologically active LL-37 peptide.
Conclusion: In the present review, we discuss 1,25D3-induced down-regulation of cytokine/chemokine production and stimulation of hCAP-18/LL-37 gene expression which represent two very important pathways for 1,25D3-evoked regulation of the innate immune response.
Keywords: Chemokine; Cytokine; Innate immune system; Vitamin D3; hCAP-18/LL-37.
Similar articles
Tada H, Shimizu T, Matsushita K, Takada H.Biomed Res. 2017;38(3):167-173. doi: 10.2220/biomedres.38.167.PMID: 28637951
Svensson D, Nebel D, Voss U, Ekblad E, Nilsson BO.Cell Tissue Res. 2016 Nov;366(2):353-362. doi: 10.1007/s00441-016-2449-z. Epub 2016 Jun 30.PMID: 27357804
Lowry MB, Guo C, Borregaard N, Gombart AF.J Steroid Biochem Mol Biol. 2014 Sep;143:183-91. doi: 10.1016/j.jsbmb.2014.02.004. Epub 2014 Feb 22.PMID: 24565560Free PMC article.
Pulmonary defense and the human cathelicidin hCAP-18/LL-37.
Fahy RJ, Wewers MD.Immunol Res. 2005;31(2):75-89. doi: 10.1385/IR:31:2:075.PMID: 15778507Free PMC article.Review.
Cathelicidins--a family of multifunctional antimicrobial peptides.
Bals R, Wilson JM.Cell Mol Life Sci. 2003 Apr;60(4):711-20. doi: 10.1007/s00018-003-2186-9.PMID: 12785718Free PMC article.Review.
Cited by
Li Z, Wei X, Shao Z, Liu H, Bai S.BMC Oral Health. 2023 Oct 19;23(1):768. doi: 10.1186/s12903-023-03422-z.PMID: 37858104Free PMC article.
An in silico scientific basis for LL-37 as a therapeutic for Covid-19.
Lokhande KB, Banerjee T, Swamy KV, Ghosh P, Deshpande M.Proteins. 2022 May;90(5):1029-1043. doi: 10.1002/prot.26198. Epub 2021 Aug 9.PMID: 34333809Free PMC article.
Vitamin D status and dental caries in healthy Swedish children.
Gyll J, Ridell K, Öhlund I, Karlsland Åkeson P, Johansson I, Lif Holgerson P.Nutr J. 2018 Jan 16;17(1):11. doi: 10.1186/s12937-018-0318-1.PMID: 29338758Free PMC article.
Shannon AH, Adelman SA, Hisey EA, Potnis SS, Rozo V, Yung MW, Li JY, Murphy CJ, Thomasy SM, Leonard BC.Front Microbiol. 2022 Jun 2;13:857735. doi: 10.3389/fmicb.2022.857735. eCollection 2022.PMID: 35722307Free PMC article.Review.
The Decline in Vitamin Research Funding: A Missed Opportunity?
Chambers JD, Anderson JE, Salem MN, Bügel SG, Fenech M, Mason JB, Weber P, West KP Jr, Wilde P, Eggersdorfer M, Booth SL.Curr Dev Nutr. 2017 Apr 5;1(8):e000430. doi: 10.3945/cdn.117.000430. eCollection 2017 Aug.PMID: 29955714Free PMC article.



